initial commit
This commit is contained in:
parent
4f75e43a39
commit
bbe0b2c96b
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
__pycache__/
|
@ -1,3 +1,7 @@
|
||||
# hnsw
|
||||
|
||||
Hierarchical Navigable Small World - demonstration of concept implementation in Python
|
||||
Hierarchical Navigable Small World - demonstration of concept implementation in Python
|
||||
|
||||
Implementation mainly referenced the paper [Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs](https://arxiv.org/abs/1603.09320) however I made simplifications.
|
||||
|
||||
I don't care about performance. That said, we can still compare the relative running time?
|
149
hnsw.py
Normal file
149
hnsw.py
Normal file
@ -0,0 +1,149 @@
|
||||
import math
|
||||
import numpy as np
|
||||
from heapq import heappush, heappop
|
||||
from collections import Counter
|
||||
import random
|
||||
|
||||
|
||||
def distance(a:np.array, b:np.array):
|
||||
return np.linalg.norm(a-b)
|
||||
|
||||
def printw(W):
|
||||
print('<==')
|
||||
for d,elem in W:
|
||||
print(d, elem.coord)
|
||||
print('==>')
|
||||
|
||||
class HNSWTower:
|
||||
def __init__(self, coord, level):
|
||||
self.coord = coord
|
||||
self.level = level
|
||||
self.neighbors = [set() for _ in range(level+1)]
|
||||
def connect(self, other, level):
|
||||
if other not in self.neighbors[level]:
|
||||
self.neighbors[level].add(other)
|
||||
if self not in other.neighbors:
|
||||
other.neighbors[level].add(self)
|
||||
def disconnect(self, other, level):
|
||||
if other in self.neighbors[level]:
|
||||
self.neighbors[level].remove(other)
|
||||
if self in other.neighbors:
|
||||
other.neighbors[level].remove(self)
|
||||
def limit_degree(self, level, M):
|
||||
if len(self.neighbors[level]) > M:
|
||||
node = None
|
||||
max_dist = 0
|
||||
for other in self.neighbors[level]:
|
||||
d = distance(self.coord, other.coord)
|
||||
if d > max_dist:
|
||||
max_dist = d
|
||||
node = other
|
||||
self.disconnect(node, level)
|
||||
|
||||
|
||||
class HNSW:
|
||||
"""
|
||||
Approximate k-Nearest Neighbor Search (k-ANNS) using Hierarchical Navigable Small World (HNSW) graph
|
||||
"""
|
||||
def __init__(self, mL, M, M_max, ef_construction, seed):
|
||||
# Enter point
|
||||
self.ep = None
|
||||
# Normalizing factor for level generation
|
||||
self.mL = mL
|
||||
# Number of connections to establish
|
||||
self.M = M
|
||||
# Maximum degree for node
|
||||
self.M_max = M_max
|
||||
# Size of NN to return during construction
|
||||
self.ef_construction = ef_construction
|
||||
self.rng = random.Random(seed)
|
||||
self.level_count = Counter()
|
||||
def generate_level(self):
|
||||
# the condition of returning a level higher than L is
|
||||
# self.mL * math.log(1/u) >= L
|
||||
# u <= exp(-L/self.mL) = exp(-1/self.mL) ^ L
|
||||
# equivalent to a "level up probability" of exp(-1/self.mL)
|
||||
u = self.rng.random()
|
||||
return math.floor(-self.mL * math.log(u))
|
||||
def insert_first(self, coord):
|
||||
self.ep = HNSWTower(coord, 0)
|
||||
self.level_count[0] += 1
|
||||
def insert(self, coord):
|
||||
if not self.ep:
|
||||
self.insert_first(coord)
|
||||
return
|
||||
ep = self.ep
|
||||
l = self.generate_level()
|
||||
self.level_count[l] += 1
|
||||
elem = HNSWTower(coord, l)
|
||||
L = self.ep.level
|
||||
for level in range(L, l, -1):
|
||||
ep = self.route_layer(coord, ep, level)
|
||||
# enter points (multiple, sorted by distance from near to far)
|
||||
eps = [(distance(coord, ep.coord), ep)]
|
||||
for level in range(min(l,L), -1, -1):
|
||||
W = self.search_layer(coord, eps, self.ef_construction, level)
|
||||
neighbors = [entry[1] for entry in sorted(W)[:self.M]]
|
||||
# Create node at this layer
|
||||
for other in neighbors:
|
||||
elem.connect(other, level)
|
||||
# Shrink connections if needed
|
||||
for other in neighbors:
|
||||
other.limit_degree(level, self.M_max)
|
||||
eps = W
|
||||
if l > L:
|
||||
self.ep = elem
|
||||
def route_layer(self, coord, ep, level):
|
||||
# returns node that is closes to coord at level, starting from "ep"
|
||||
while True:
|
||||
best = None
|
||||
min_d = distance(coord, ep.coord)
|
||||
for other in ep.neighbors[level]:
|
||||
d = distance(coord, other.coord)
|
||||
if d < min_d:
|
||||
min_d = d
|
||||
best = other
|
||||
if best:
|
||||
ep = best
|
||||
else:
|
||||
return ep
|
||||
def search_layer(self, coord, eps, ef, level):
|
||||
# returns a vector of (distance, node) satisfying heap condition
|
||||
V = set([entry[1] for entry in eps])
|
||||
# set of candidates organized as priority queue (pq)
|
||||
C = eps # nearest element has top priority
|
||||
# dynamic list of found nearest neighbors organized as pq
|
||||
W = [(-entry[0], entry[1]) for entry in eps]
|
||||
# print(level, "start")
|
||||
# printw(W)
|
||||
W.reverse() # farthest element has top priority
|
||||
while len(C) > 0:
|
||||
c_dist, c = heappop(C)
|
||||
f_dist, f = W[0]
|
||||
f_dist = - f_dist
|
||||
if c_dist > f_dist:
|
||||
break # all elements in W are evaluated
|
||||
for e in c.neighbors[level]:
|
||||
if e not in V:
|
||||
V.add(e)
|
||||
f_dist, f = W[0]
|
||||
f_dist = - f_dist
|
||||
e_dist = distance(coord, e.coord)
|
||||
if e_dist < f_dist or len(W) < ef:
|
||||
heappush(C, (e_dist, e))
|
||||
heappush(W, (-e_dist, e))
|
||||
if len(W) > ef:
|
||||
heappop(W)
|
||||
W = [(-entry[0], entry[1]) for entry in W]
|
||||
W.reverse()
|
||||
# print(level, "end")
|
||||
# printw(W)
|
||||
return W
|
||||
def k_nn_search(self, coord, K, ef):
|
||||
ep = self.ep
|
||||
L = ep.level
|
||||
for level in range(L, 0, -1):
|
||||
ep = self.route_layer(coord, ep, level)
|
||||
eps = [(distance(coord, ep.coord), ep)]
|
||||
W = self.search_layer(coord, eps, ef, 0)
|
||||
return sorted(W)[:K]
|
80
knntest.py
Normal file
80
knntest.py
Normal file
@ -0,0 +1,80 @@
|
||||
import numpy as np
|
||||
import time
|
||||
from hnsw import *
|
||||
|
||||
class SyntheticVectors:
|
||||
def __init__(self, num_pts, dim, seed):
|
||||
np.random.seed(seed)
|
||||
self.num_pts = num_pts
|
||||
self.dim = dim
|
||||
self.points = np.random.normal(0, 1, (num_pts, dim))
|
||||
def knn(self, query, k):
|
||||
W = [(distance(query, self.points[i]), self.points[i]) for i in range(self.num_pts)]
|
||||
return sorted(W)[:k]
|
||||
def validate_results(self, query, k, results):
|
||||
ground_truth = self.knn(query, k)
|
||||
hit = 0
|
||||
for g_dist, g_coord in ground_truth:
|
||||
for r_dist, r_coord in results:
|
||||
if np.isclose(np.linalg.norm(g_coord-r_coord), 0):
|
||||
hit += 1
|
||||
break
|
||||
return hit
|
||||
|
||||
|
||||
class HNSWTester:
|
||||
def __init__(self, num_corpus, dim, seed):
|
||||
self.num_corpus = num_corpus
|
||||
self.dim = dim
|
||||
self.seed = seed
|
||||
self.corpus = SyntheticVectors(num_corpus, dim, seed)
|
||||
np.random.seed(seed+1)
|
||||
def build_hnsw(self, M, ef_construction):
|
||||
self.M, self.ef_construction = M, ef_construction
|
||||
mL = 1/math.log(M)
|
||||
# using the above ml, the "level up" probability is 1/M.
|
||||
# Build the HNSW
|
||||
start_time = time.perf_counter()
|
||||
self.hnsw = HNSW(mL, M, M, ef_construction, self.seed)
|
||||
for ic in range(self.num_corpus):
|
||||
self.hnsw.insert(self.corpus.points[ic])
|
||||
end_time = time.perf_counter()
|
||||
build_time = end_time - start_time
|
||||
print("Built HNSW in %.4f seconds" % build_time)
|
||||
self.build_time = build_time
|
||||
self.print_hnsw_levels()
|
||||
def gen_queries(self, num_query):
|
||||
self.num_query = num_query
|
||||
self.queries = np.random.normal(0, 1, (num_query, self.dim))
|
||||
def query_hnsw(self, K, ef):
|
||||
"returns recall and average query time"
|
||||
self.K, self.ef = K, ef
|
||||
n_hit = 0
|
||||
tot_time = 0
|
||||
for iq in range(self.num_query):
|
||||
start_time = time.perf_counter()
|
||||
result = self.hnsw.k_nn_search(self.queries[iq], K, ef)
|
||||
result = [(dist, node.coord) for dist, node in result]
|
||||
end_time = time.perf_counter()
|
||||
tot_time += end_time - start_time
|
||||
n_hit += self.corpus.validate_results(self.queries[iq], K, result)
|
||||
self.recall, self.query_ms = n_hit / (self.num_query * K), tot_time * 1000 / self.num_query
|
||||
print("recall:%.4f, query time/ms: %.4f" % (self.recall, self.query_ms))
|
||||
def print_hnsw_levels(self):
|
||||
cnt = self.hnsw.level_count
|
||||
L = self.hnsw.ep.level
|
||||
for level in range(L+1):
|
||||
print(f"level {level}: {cnt[level]} nodes")
|
||||
def log_results(self, fname="result.csv"):
|
||||
f = open(fname, 'a', encoding='utf-8')
|
||||
f.write(f"{self.num_corpus},{self.dim},")
|
||||
f.write(f"{self.M},{self.ef_construction},%.4f," % self.build_time)
|
||||
f.write(f"{self.K},{self.ef},%.4f,%.4f," % (self.recall, self.query_ms))
|
||||
f.write(f"{self.num_query},{self.seed}\n")
|
||||
|
||||
|
||||
tester = HNSWTester(num_corpus=5000, dim=100, seed=43)
|
||||
tester.build_hnsw(M=10, ef_construction=10)
|
||||
tester.gen_queries(num_query=100)
|
||||
tester.query_hnsw(K=5, ef=10)
|
||||
tester.log_results()
|
21
result.csv
Normal file
21
result.csv
Normal file
@ -0,0 +1,21 @@
|
||||
N_corpus,Dim,M,ef_construction,build_time,K,ef,recall,query_ms,N_query,seed
|
||||
1000,10,10,50,1.2735,5,10,0.8280,0.4636,100,43
|
||||
1000,20,10,50,1.3208,5,10,0.6200,0.5730,100,43
|
||||
1000,30,10,50,1.2967,5,10,0.6540,0.5083,100,43
|
||||
1000,40,10,50,1.3569,5,10,0.6140,0.4980,100,43
|
||||
1000,50,10,50,1.3414,5,10,0.5340,0.5513,100,43
|
||||
1000,70,10,50,1.3196,5,10,0.5560,0.5107,100,43
|
||||
1000,100,10,50,1.3419,5,10,0.5160,0.5179,100,43
|
||||
1000,100,12,50,1.6164,5,10,0.5760,0.5652,100,43
|
||||
1000,100,14,50,1.8366,5,10,0.6000,0.6434,100,43
|
||||
1000,100,16,50,2.1186,5,10,0.6420,0.6895,100,43
|
||||
1000,100,18,50,2.4118,5,10,0.6880,0.7652,100,43
|
||||
1000,100,20,50,2.7659,5,10,0.6940,0.8060,100,43
|
||||
2000,100,20,50,6.2879,5,10,0.5740,0.9183,100,43
|
||||
3000,100,20,50,10.1791,5,10,0.5280,1.0457,100,43
|
||||
4000,100,20,50,14.1797,5,10,0.4720,1.1173,100,43
|
||||
5000,100,20,50,18.9001,5,10,0.4240,1.1408,100,43
|
||||
5000,100,10,50,9.2855,5,10,0.3220,0.6739,100,43
|
||||
5000,100,10,100,13.6119,5,10,0.3160,0.6867,100,43
|
||||
5000,100,10,20,6.0684,5,10,0.3080,0.6659,100,43
|
||||
5000,100,10,10,4.9333,5,10,0.2520,0.6278,100,43
|
|
Loading…
x
Reference in New Issue
Block a user